๊ด€๋ฆฌ ๋ฉ”๋‰ด

๋ชฉ๋ก๋”ฅ๋Ÿฌ๋‹ (17)

Hey Tech

[Deep Learning] RNN ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ฐœ๋… ์ดํ•ด

๐Ÿ“š ๋ชฉ์ฐจ 1. RNN ๊ฐœ๋… 2. RNN ์ˆ˜์‹ 3. RNN ์šฉ๋„ 1. RNN ๊ฐœ๋… Recurrent Neural Network(RNN)์€ ์ž์—ฐ์–ด ๋ฌธ์žฅ๊ณผ ๊ฐ™์ด ๋‹จ์–ด์˜ ์ˆœ์„œ์— ๋”ฐ๋ผ ์˜๋ฏธ๊ฐ€ ๋‹ฌ๋ผ์ง€๋Š” ์ˆœ์ฐจ ๋ฐ์ดํ„ฐ(Sequential Data)๋ฅผ ๋‹ค๋ฃฐ ๋•Œ ์ฃผ๋กœ ์‚ฌ์šฉ๋˜๋Š” ์‹ ๊ฒฝ๋ง์ž…๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ RNN์€ ๋‹จ์–ด์˜ ์–ด์ˆœ์— ๋”ฐ๋ผ ๋ฌธ์žฅ์˜ ์˜๋ฏธ๊ฐ€ ๋‹ฌ๋ผ์ง€๊ณ  ์•ž์— ์–ด๋–ค ๋‹จ์–ด๊ฐ€ ์“ฐ์˜€๋Š”์ง€ ๊ธฐ์–ตํ•ด์•ผ ๋’ค์— ์˜ค๋Š” ๋‹จ์–ด๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๋“ฑ์˜ ๋ฌธ์ œ๋ฅผ ํ’€ ๋•Œ ์ฃผ๋กœ ํ™œ์šฉ๋ฉ๋‹ˆ๋‹ค. RNN์€ Hidden Layer์˜ ๋…ธ๋“œ์—์„œ ํ™œ์„ฑํ™” ํ•จ์ˆ˜(Activation Function)๋ฅผ ๊ฑฐ์ณ ๋‚˜์˜จ ๊ฒฐ๊ด๊ฐ’์„ Output Layer๋กœ ๋ณด๋‚ด๋ฉด์„œ ๋‹ค์‹œ ๋‹ค์Œ Hidden Layer ๋…ธ๋“œ ๊ณ„์‚ฐ์˜ ์ž…๋ ฅ๊ฐ’์œผ๋กœ ๋ณด๋‚ด๋Š” ์‹ ๊ฒฝ๋ง์ž…๋‹ˆ๋‹ค. ์ด์ฒ˜๋Ÿผ, ๊ฒฐ๊ด๊ฐ’์ด ๋‹ค์Œ Hidden Layer ๋…ธ๋“œ์˜..

[๋”ฅ๋Ÿฌ๋‹] Grid Search, Random Search, Bayesian Optimization

๐Ÿ‘จ‍๐Ÿ’ป ๋“ค์–ด๊ฐ€๋ฉฐ ๋ณธ ํฌ์ŠคํŒ…์—์„œ๋Š” ๋”ฅ๋Ÿฌ๋‹ ๋ถ„์•ผ์—์„œ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ์ตœ์ ํ™” ๋ฐฉ๋ฒ• 3๊ฐ€์ง€์ธ Grid Search, Random Search, Bayesian Optimization์— ๋Œ€ํ•ด ์•Œ์•„๋ด…๋‹ˆ๋‹ค. ๐Ÿ“š ๋ชฉ์ฐจ 1. Grid Search 2. Random Search 3. Bayesian Optimization 1. Grid Search ๊ทธ๋ฆฌ๋“œ ์„œ์น˜(Grid Search)๋Š” ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ผ์ •ํ•œ ๊ฐ„๊ฒฉ์œผ๋กœ ๋ณ€๊ฒฝํ•˜๋ฉฐ ์ตœ์ ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ฐพ์•„๊ฐ€๋Š” ๊ธฐ๋ฒ•์ž…๋‹ˆ๋‹ค. ์•„๋ž˜์˜ ๊ทธ๋ฆผ 1์ฒ˜๋Ÿผ ๊ฐ€๋กœ์ถ•์ด ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ์ด๊ณ  ์„ธ๋กœ์ถ•์ด ๋ชฉํ‘œํ•จ์ˆ˜์ผ ๋•Œ, ๋ชฉํ‘œํ•จ์ˆ˜ ๊ฐ’์ด ์ตœ๋Œ€๊ฐ€ ๋˜๋Š” ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ฐพ๋Š” ๋ฌธ์ œ๋ฅผ ํ’€์–ด์•ผ ํ•œ๋‹ค๊ณ  ๊ฐ€์ •ํ•ด ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๋“œ ์„œ์น˜๋Š” ํŠน์ • ๋ฒ”์œ„ ๋‚ด์—์„œ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ผ์ • ๊ฐ’๋งŒํผ ์ผ์ผ์ด ๋ณ€๊ฒฝํ•˜๋ฉฐ ์ถœ๋ ฅ๊ฐ’์„ ๋น„๊ตํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ..

[๋”ฅ๋Ÿฌ๋‹] ๊ธฐ์šธ๊ธฐ ์†Œ์‹ค(Vanishing Gradient)์˜ ์˜๋ฏธ์™€ ํ•ด๊ฒฐ๋ฐฉ๋ฒ•

๐Ÿ“Œ Text ๋น…๋ฐ์ดํ„ฐ๋ถ„์„ ํ”Œ๋žซํผ ๋ฒ ํƒ€ํ…Œ์ŠคํŠธ ์ฐธ๊ฐ€์ž ๋ชจ์ง‘ ์ค‘!(๋„ค์ด๋ฒ„ํŽ˜์ด 4๋งŒ ์› ์ „์› ์ง€๊ธ‰) ๐Ÿ‘‹ ์•ˆ๋…•ํ•˜์„ธ์š”, ์ฝ”๋”ฉ์ด ํ•„์š” ์—†๋Š” AI/๋น…๋ฐ์ดํ„ฐ ๋ถ„์„ All in One ํ”Œ๋žซํผ  ๊ฐœ๋ฐœํŒ€์ž…๋‹ˆ๋‹ค.๐Ÿ˜Š ์ €ํฌ ์„œ๋น„์Šค๋ฅผ ์‚ฌ์šฉํ•ด ๋ณด์‹œ๊ณ  ๊ฒฝํ—˜๋‹ด์„ ๋“ค๋ ค์ฃผ์„ธ์š” :)๐Ÿ’ธ ์ฐธ์—ฌํ•ด ์ฃผ์‹  "๋ชจ๋“ " ๋ถ„๋“ค๊ป˜ ๋„ค์ด๋ฒ„ํŽ˜์ด 4๋งŒ ์› ์ฟ ํฐ์„ ์ง€๊ธ‰ํ•ด ๋“œ๋ฆฝ๋‹ˆ๋‹ค.๐Ÿ‘จ‍๐Ÿ’ป ์ฐธ์—ฌ ํฌ๋ง ์‹œ ์นดํ†กํ”Œ๋Ÿฌ์Šค์นœ๊ตฌ 1:1 ์ฑ„ํŒ… or ์ธ์Šคํƒ€๊ทธ๋žจ DM ๋ถ€ํƒ๋“œ๋ฆฝ๋‹ˆ๋‹ค :)๐Ÿ“† ์ฐธ์—ฌ๊ธฐ๊ฐ„ : 11/25(์›”)~11/29(๊ธˆ) 11:00~21:00 ์ค‘ ํƒ1 (1์‹œ๊ฐ„ 1ํƒ€์ž„)๐Ÿ‘‰ ์ฐธ์—ฌ์žฅ์†Œ : ๊ฐ•๋‚จ์—ญ ์ธ๊ทผ ์Šคํ„ฐ๋””์นดํŽ˜ ๋ฏธํŒ…Room๐Ÿ“ ์†Œ์š”์‹œ๊ฐ„ : ์ด 40๋ถ„ ๋‚ด์™ธ(์„œ๋น„์Šค ์ฒดํ—˜ ๋ฐ ์ธํ„ฐ๋ทฐ ํฌํ•จ)โœ… ์ฐธ๊ฐ€์กฐ๊ฑด : Text ๋น…๋ฐ์ดํ„ฐ ๋ถ„์„ ์—…๋ฌด ๊ฒฝํ—˜์ž๐Ÿ‘‰ ์ฐธ๊ฐ€ ๊ฐ€๋Šฅ์ผ์ • ์กฐํšŒํ•˜๊ธฐ : ht..

[๋”ฅ๋Ÿฌ๋‹] ๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ•(Gradient Descent) ์ข…๋ฅ˜

๐Ÿ“š ๋ชฉ์ฐจ 1. ๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ• ๊ฐœ๋… 2. ๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ• ์ข…๋ฅ˜ 2.1. ๋ฐฐ์น˜ ๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ• 2.2. ํ™•๋ฅ ์  ๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ• 2.3. ๋ฏธ๋‹ˆ ๋ฐฐ์น˜ ๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ• 1. ๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ• ๊ฐœ๋… ๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ•(Gradient Descent)์ด๋ž€ ๋”ฅ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ํ•™์Šต ์‹œ ์‚ฌ์šฉ๋˜๋Š” ์ตœ์ ํ™” ๋ฐฉ๋ฒ•(Optimizer) ์ค‘ ํ•˜๋‚˜์ž…๋‹ˆ๋‹ค. ๋”ฅ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ํ•™์Šต ์‹œ ๋ชฉํ‘œ๋Š” ์˜ˆ์ธก๊ฐ’๊ณผ ์ •๋‹ต๊ฐ’ ๊ฐ„์˜ ์ฐจ์ด์ธ ์†์‹ค ํ•จ์ˆ˜์˜ ํฌ๊ธฐ๋ฅผ ์ตœ์†Œํ™”์‹œํ‚ค๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ฐพ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ํ•™์Šต ๋ฐ์ดํ„ฐ ์ž…๋ ฅ์„ ๋ณ€๊ฒฝํ•  ์ˆ˜ ์—†๊ธฐ ๋•Œ๋ฌธ์—, ์†์‹ค ํ•จ์ˆ˜ ๊ฐ’์˜ ๋ณ€ํ™”์— ๋”ฐ๋ผ ๊ฐ€์ค‘์น˜(weight) ํ˜น์€ ํŽธํ–ฅ(bias)์„ ์—…๋ฐ์ดํŠธํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿผ ์–ด๋–ป๊ฒŒ ์ตœ์ ์˜ ๊ฐ€์ค‘์น˜๋‚˜ ํŽธํ–ฅ์„ ์ฐพ์„ ์ˆ˜ ์žˆ์„๊นŒ์š”? ์ตœ์ ์˜ ๊ฐ€์ค‘์น˜๋ฅผ ์ฐพ๋Š” ๊ณผ์ •์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ตœ์ ์˜ ํŽธํ–ฅ์„ ์ฐพ๋Š” ๊ณผ์ • ์—ญ์‹œ ์ ˆ์ฐจ๋Š” ๋™์ผํ•ฉ๋‹ˆ๋‹ค. ์•„๋ž˜์˜ ๊ทธ..

[๋”ฅ๋Ÿฌ๋‹] Epoch, Iteration, Batch size ๊ฐœ๋…

๐Ÿ“š ๋ชฉ์ฐจ 1. Batch Size 2. Iteration 3. Epoch 1. Batch Size Batch ํฌ๊ธฐ๋Š” ๋ชจ๋ธ ํ•™์Šต ์ค‘ parameter๋ฅผ ์—…๋ฐ์ดํŠธํ•  ๋•Œ ์‚ฌ์šฉํ•  ๋ฐ์ดํ„ฐ ๊ฐœ์ˆ˜๋ฅผ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค. ์‚ฌ๋žŒ์ด ๋ฌธ์ œ ํ’€์ด๋ฅผ ํ†ตํ•ด ํ•™์Šตํ•ด ๋‚˜๊ฐ€๋Š” ๊ณผ์ •์„ ์˜ˆ๋กœ ๋“ค์–ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. Batch ํฌ๊ธฐ๋Š” ๋ช‡ ๊ฐœ์˜ ๋ฌธ์ œ๋ฅผ ํ•œ ๋ฒˆ์— ์ญ‰ ํ’€๊ณ  ์ฑ„์ ํ• ์ง€๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ๊ฒƒ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์ด 100๊ฐœ์˜ ๋ฌธ์ œ๊ฐ€ ์žˆ์„ ๋•Œ, 20๊ฐœ์”ฉ ํ’€๊ณ  ์ฑ„์ ํ•œ๋‹ค๋ฉด Batch ํฌ๊ธฐ๋Š” 20์ž…๋‹ˆ๋‹ค. ์‚ฌ๋žŒ์€ ๋ฌธ์ œ๋ฅผ ํ’€๊ณ  ์ฑ„์ ์„ ํ•˜๋ฉด์„œ ๋ฌธ์ œ๋ฅผ ํ‹€๋ฆฐ ์ด์œ ๋‚˜ ๋งž์ถ˜ ์›๋ฆฌ๋ฅผ ํ•™์Šตํ•˜์ฃ . ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ ์—ญ์‹œ ๋งˆ์ฐฌ๊ฐ€์ง€์ž…๋‹ˆ๋‹ค. Batch ํฌ๊ธฐ๋งŒํผ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•ด ๋ชจ๋ธ์ด ์˜ˆ์ธกํ•œ ๊ฐ’๊ณผ ์‹ค์ œ ์ •๋‹ต ๊ฐ„์˜ ์˜ค์ฐจ(conf. ์†์‹คํ•จ์ˆ˜)๋ฅผ ๊ณ„์‚ฐํ•˜์—ฌ Optimizer๊ฐ€ parameter๋ฅผ..

[Deep Learning] ์ตœ์ ํ™”(Optimizer): (4) Adam

๐Ÿ“Œ Text ๋น…๋ฐ์ดํ„ฐ๋ถ„์„ ํ”Œ๋žซํผ ๋ฒ ํƒ€ํ…Œ์ŠคํŠธ ์ฐธ๊ฐ€์ž ๋ชจ์ง‘ ์ค‘!(๋„ค์ด๋ฒ„ํŽ˜์ด 4๋งŒ ์› ์ „์› ์ง€๊ธ‰) ๐Ÿ‘‹ ์•ˆ๋…•ํ•˜์„ธ์š”, ์ฝ”๋”ฉ์ด ํ•„์š” ์—†๋Š” AI/๋น…๋ฐ์ดํ„ฐ ๋ถ„์„ All in One ํ”Œ๋žซํผ  ๊ฐœ๋ฐœํŒ€์ž…๋‹ˆ๋‹ค.๐Ÿ˜Š ์ €ํฌ ์„œ๋น„์Šค๋ฅผ ์‚ฌ์šฉํ•ด ๋ณด์‹œ๊ณ  ๊ฒฝํ—˜๋‹ด์„ ๋“ค๋ ค์ฃผ์„ธ์š” :)๐Ÿ’ธ ์ฐธ์—ฌํ•ด ์ฃผ์‹  "๋ชจ๋“ " ๋ถ„๋“ค๊ป˜ ๋„ค์ด๋ฒ„ํŽ˜์ด 4๋งŒ ์› ์ฟ ํฐ์„ ์ง€๊ธ‰ํ•ด ๋“œ๋ฆฝ๋‹ˆ๋‹ค.๐Ÿ‘จ‍๐Ÿ’ป ์ฐธ์—ฌ ํฌ๋ง ์‹œ ์นดํ†กํ”Œ๋Ÿฌ์Šค์นœ๊ตฌ 1:1 ์ฑ„ํŒ… or ์ธ์Šคํƒ€๊ทธ๋žจ DM ๋ถ€ํƒ๋“œ๋ฆฝ๋‹ˆ๋‹ค :)๐Ÿ“† ์ฐธ์—ฌ๊ธฐ๊ฐ„ : 11/25(์›”)~11/29(๊ธˆ) 11:00~21:00 ์ค‘ ํƒ1 (1์‹œ๊ฐ„ 1ํƒ€์ž„)๐Ÿ‘‰ ์ฐธ์—ฌ์žฅ์†Œ : ๊ฐ•๋‚จ์—ญ ์ธ๊ทผ ์Šคํ„ฐ๋””์นดํŽ˜ ๋ฏธํŒ…Room๐Ÿ“ ์†Œ์š”์‹œ๊ฐ„ : ์ด 40๋ถ„ ๋‚ด์™ธ(์„œ๋น„์Šค ์ฒดํ—˜ ๋ฐ ์ธํ„ฐ๋ทฐ ํฌํ•จ)โœ… ์ฐธ๊ฐ€์กฐ๊ฑด : Text ๋น…๋ฐ์ดํ„ฐ ๋ถ„์„ ์—…๋ฌด ๊ฒฝํ—˜์ž๐Ÿ‘‰ ์ฐธ๊ฐ€ ๊ฐ€๋Šฅ์ผ์ • ์กฐํšŒํ•˜๊ธฐ : ht..

[Deep Learning] ์ตœ์ ํ™”(Optimizer): (3) RMSProp

๐Ÿ“Œ Text ๋น…๋ฐ์ดํ„ฐ๋ถ„์„ ํ”Œ๋žซํผ ๋ฒ ํƒ€ํ…Œ์ŠคํŠธ ์ฐธ๊ฐ€์ž ๋ชจ์ง‘ ์ค‘!(๋„ค์ด๋ฒ„ํŽ˜์ด 4๋งŒ ์› ์ „์› ์ง€๊ธ‰) ๐Ÿ‘‹ ์•ˆ๋…•ํ•˜์„ธ์š”, ์ฝ”๋”ฉ์ด ํ•„์š” ์—†๋Š” AI/๋น…๋ฐ์ดํ„ฐ ๋ถ„์„ All in One ํ”Œ๋žซํผ  ๊ฐœ๋ฐœํŒ€์ž…๋‹ˆ๋‹ค.๐Ÿ˜Š ์ €ํฌ ์„œ๋น„์Šค๋ฅผ ์‚ฌ์šฉํ•ด ๋ณด์‹œ๊ณ  ๊ฒฝํ—˜๋‹ด์„ ๋“ค๋ ค์ฃผ์„ธ์š” :)๐Ÿ’ธ ์ฐธ์—ฌํ•ด ์ฃผ์‹  "๋ชจ๋“ " ๋ถ„๋“ค๊ป˜ ๋„ค์ด๋ฒ„ํŽ˜์ด 4๋งŒ ์› ์ฟ ํฐ์„ ์ง€๊ธ‰ํ•ด ๋“œ๋ฆฝ๋‹ˆ๋‹ค.๐Ÿ‘จ‍๐Ÿ’ป ์ฐธ์—ฌ ํฌ๋ง ์‹œ ์นดํ†กํ”Œ๋Ÿฌ์Šค์นœ๊ตฌ 1:1 ์ฑ„ํŒ… or ์ธ์Šคํƒ€๊ทธ๋žจ DM ๋ถ€ํƒ๋“œ๋ฆฝ๋‹ˆ๋‹ค :)๐Ÿ“† ์ฐธ์—ฌ๊ธฐ๊ฐ„ : 11/25(์›”)~11/29(๊ธˆ) 11:00~21:00 ์ค‘ ํƒ1 (1์‹œ๊ฐ„ 1ํƒ€์ž„)๐Ÿ‘‰ ์ฐธ์—ฌ์žฅ์†Œ : ๊ฐ•๋‚จ์—ญ ์ธ๊ทผ ์Šคํ„ฐ๋””์นดํŽ˜ ๋ฏธํŒ…Room๐Ÿ“ ์†Œ์š”์‹œ๊ฐ„ : ์ด 40๋ถ„ ๋‚ด์™ธ(์„œ๋น„์Šค ์ฒดํ—˜ ๋ฐ ์ธํ„ฐ๋ทฐ ํฌํ•จ)โœ… ์ฐธ๊ฐ€์กฐ๊ฑด : Text ๋น…๋ฐ์ดํ„ฐ ๋ถ„์„ ์—…๋ฌด ๊ฒฝํ—˜์ž๐Ÿ‘‰ ์ฐธ๊ฐ€ ๊ฐ€๋Šฅ์ผ์ • ์กฐํšŒํ•˜๊ธฐ : ht..