DATA101
[Deep Learning] 최적화(Optimizer): (4) Adam 본문
📌 Text 빅데이터분석 플랫폼 베타테스트 참가자 모집 중!(네이버페이 4만 원 전원 지급)

👋 안녕하세요, 코딩이 필요 없는 AI/빅데이터 분석 All in One 플랫폼 <DATA101> 개발팀입니다.
😊 저희 서비스를 사용해 보시고 경험담을 들려주세요 :)
💸 참여해 주신 "모든" 분들께 네이버페이 4만 원 쿠폰을 지급해 드립니다.
👨💻 참여 희망 시 카톡플러스친구 1:1 채팅 or 인스타그램 DM 부탁드립니다 :)
📆 참여기간 : 11/25(월)~11/29(금) 11:00~21:00 중 택1 (1시간 1타임)
👉 참여장소 : 강남역 인근 스터디카페 미팅Room
📍 소요시간 : 총 40분 내외(서비스 체험 및 인터뷰 포함)
✅ 참가조건 : Text 빅데이터 분석 업무 경험자
👉 참가 가능일정 조회하기 : https://url.kr/n8k8gu
- 카톡플친 : http://pf.kakao.com/_SxltHG/chat
- 인스타그램 : https://www.instagram.com/data101.official/
1. 개념
Adaptive Moment Estimation(Adam)은 딥러닝 최적화 기법 중 하나로써 Momentum과 RMSProp의 장점을 결합한 알고리즘입니다. 즉, 학습의 방향과 크기(=Learning rate)를 모두 개선한 기법으로 딥러닝에서 가장 많이 사용되어 "오던" 최적화 기법으로 알려져 있습니다. 최근에는 RAdam, AdamW과 같이 더욱 우수한 성능을 보이는 최적화 기법이 제안되었지만, 본 포스팅에서는 딥러닝 분야 전반을 공부하는 마음가짐으로 Adam에 대해 알아봅니다.
2. 수식
수식과 함께 Adam에 대해 자세히 알아보겠습니다.
: Momentum의 지수이동평균 : RMSProp의 지수이동평균 , : 학습 초기 시 가 이 되는 것을 방지하기 위한 보정 값 : 분모가 이 되는 것을 방지하기 위한 작은 값 : 학습률
2.1. 지수이동평균
2.2. 편향 보정
2.3. 학습률
학습률(
📚참고할 만한 포스팅
1. [Deep Learning] 퍼셉트론(Perceptron) 개념 이해
2. [Deep Learning] 퍼셉트론(Perceptron) 학습방법 및 절차
3. [Deep Learning] 활성화 함수의 개념 및 종류: sign, tanh, sigmoid, softmax, ReLU
4. [Deep Learning] 손실함수(Loss Function) 개념
5. [Deep Learning] 평균제곱오차(MSE) 개념 및 특징
6. [Deep Learning] 평균절대오차(MAE) 개념 및 특징
7. [Deep Learning] 최적화 개념과 경사 하강법(Gradient Descent)
8. [Deep Learning] 최적화 기법: (1) Momentum
9. [Deep Learning] 최적화 기법: (2) AdaGrad
10. [Deep Learning] 최적화 기법: (3) RMSProp
11. [Deep Learning] 최적화 기법: (4) Adam
포스팅 내용에 오류가 있다면 아래에 댓글 남겨주시길 바랍니다.
그럼 오늘도 멋진 하루 만드시길 바랍니다 :)
고맙습니다😊
'AI & 빅데이터 > 머신러닝·딥러닝' 카테고리의 다른 글
[딥러닝] 경사 하강법(Gradient Descent) 종류 (0) | 2022.05.21 |
---|---|
[딥러닝] Epoch, Iteration, Batch size 개념 (6) | 2022.05.21 |
[Deep Learning] 최적화(Optimizer): (3) RMSProp (0) | 2022.05.21 |
[Deep Learning] 최적화(Optimizer): (2) AdaGrad (0) | 2022.05.20 |
[Deep Learning] 최적화(Optimizer): (1) Momentum (2) | 2022.05.17 |